Continuous collocation approximations to solutions of first kind Volterra equations

نویسندگان

  • J.-P. Kauthen
  • Hermann Brunner
چکیده

In this paper we give necessary and sufficient conditions for convergence of continuous collocation approximations of solutions of first kind Volterra integral equations. The results close some longstanding gaps in the theory of polynomial spline collocation methods for such equations. The convergence analysis is based on a Runge-Kutta or ODE approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral ‎Equations‎

‎‎In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...

متن کامل

A wavelet method for stochastic Volterra integral equations and its application to general stock model

In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...

متن کامل

Multilevel correction for collocation solutions of Volterra integral equations with proportional delays

In this paper we propose a convergence acceleration method for collocation solutions of the linear second-kind Volterra integral equations with proportional delay qt (0 < q < 1). This convergence acceleration method called multilevel correction method is based on a kind of hybrid mesh, which can be viewed as a combination between the geometric meshes and the uniform meshes. It will be shown tha...

متن کامل

Discretization of Volterra Integral Equations

We show that various (discrete) methods for the approximate solution of Volterra (and Abel) integral equations of the first kind correspond to some discrete version of the method of (recursive) collocation in the space of (continuous) piecewise polynomials. In a collocation method no distinction has to be made between equations with regular or weakly singular kernels; the regularity or nonregul...

متن کامل

Integral Collocation Approximation Methods for the Numerical Solution of High-Orders Linear Fredholm-Volterra Integro-Differential Equations

In this paper, we employed the use of Standard Integral Collocation Approximation Method to obtain numerical solutions of special higher orders linear Fredholm-Volterra Integro-Differential Equations. Power Series, Chebyshev and Legendre's Polynomials forms of approximations are used as basis functions. From the computational view points, the method is efficient, convenient, reliable and superi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 66  شماره 

صفحات  -

تاریخ انتشار 1997